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Abstract 

This study examines the effect different weather conditions have on key performance metrics 
for 21 train operators running in England, Wales and Scotland. With a global climate 
emergency and weather becoming more extreme and unpredictable, it is important to 
understand how this will affect the railways so mitigation efforts can be focussed in protecting 
against weather conditions which have the greatest impact on train operator performance. 
Understanding how weather affects the performance of train operators is important for 
focussing efforts to maintain the competitiveness of the railway and its economic viability. This 
study analyses how temperature, rainfall, snow, windspeed, and the seasonal impact of 
autumnal leaves on railway track affect two different dependent variables: the number of delay 
minutes and number of cancelled trains recorded for each train operator. I have used data 
from April 2011 to March 2020 for delay minutes and April 2014 to March 2020 for cancelled 
trains in which 13 four-week periods are reported for each financial year. I have matched the 
appropriate weather conditions onto each four-week period to construct a panel dataset in 
which the impact of weather on delay and cancellations can be analysed. I have used random 
effect modelling to analyse the data, as, indicated by the Hausman test, it was more appropriate 
than a fixed effects model. Analysis shows that hot and dry weather conditions have a 
significant affect on delay minutes, with high temperature increasing delay by 4,694 minutes 
and low rainfall increasing delay by 4,810 minutes, which is an increase of 9.2% and 9.5% 
respectively when compared to mean delay minutes in a four-week period. Heavy rain, cold 
temperatures and high windspeed increase delay minutes but by a smaller amount than hot and 
dry weather conditions. For the number of cancelled trains, fewer weather conditions were 
found to be significant in affecting the number of cancelled trains. Temperature was the only 
variable which was shown to increase the number of trains cancelled, with temperatures below 
0°C and above 21°C increasing the number of cancelled trains by 269 and 203 trains 
respectively. This represents an increase of 38.7% and 29.3%, when compared to the mean 
number of trains cancelled in a four-week period. The month of November is significant in all 
models I have tested for both dependent variables, confirming that leaves on the track, which 
is prevalent in the autumn months leads to more delay. The key policy implications from my 
analysis are that it would be most beneficial to protect against hot and dry weather conditions 
and the seasonal impact of leaves on the track during the autumnal months, specifically 
November.  
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1. Introduction  

The Intergovernmental Panel on Climate Change (IPCC) states in its latest report that climate 
change is “already affecting many weather and climate extremes in every region across the 
globe” (IPCC, 2023). The global surface temperature is 1.1°C above the temperature in 1900 
(IPCC, 2023). This is apparent in the UK alone with highest temperature on record seen in July 
2022, with England reaching 40.3°C (Met Office, 2022).  

The railways are a crucial mode of transportation, with 31,209km of track covering Great 
Britain (Office of Rail and Road, 2022), and will face their own unique risks when it comes to 
climate change, with impacts being likely more impactful due to the knock on effects delays 
for one train has for other trains on the network, and the unique safety considerations needed 
to run trains on the network (Palin et al, 2021). More extreme temperatures, and higher rainfall 
and windspeeds, leading to flooding and storm damage, will all affect rail infrastructure. Heavy 
rainfall can lead to embankment instability (Dawson et al, 2018) and track flooding (Palin et 
al, 2021). In 2018, 2,400km of the UK rail network was at risk of flooding (Dawson et al, 
2018). High temperatures are also costly for the railways with the 2003 heatwave costing £2.5 
million to repair the rail infrastructure due to rail buckling (Dawson et al, 2018).  

The impacts of weather conditions on railway infrastructure have a direct impact on train 
operators in the form of delayed or cancelled train services. Network Rail reports in its third 
adaptation report, which outlines their latest plans for climate adaptation, that 322,000 delay 
events have been caused by weather, with the caveat that this is a conservative estimate 
(Network Rail, 2021). This has an effect on passenger satisfaction, which is important to 
maintain loyalty towards a service (Keaveney, 1995), and so maintaining competitiveness for 
the railways. A study by Monsuur et al found that passengers react negatively to delays which 
are over 30 minutes and this is exacerbated when trains are cancelled (Monsuur et al, 2021). 
The opportunity cost of using rail travel may become higher than using other modes of transport 
if repeated delays or cancellations are incurred. Passengers who do not arrive at their 
destination on time may have missed important commitments. If consistent delay is 
experienced, passengers may view the service as unreliable and opt to use other substitutable 
modes of transport, such as driving. Negative passenger reactions can also damage the railway 
company’s reputation, especially in the age of social media, so customers who may be 
considering using the service may choose a different mode of transport, regardless of whether 
they have experienced delay themselves or not. There is a direct economic cost to delay, with 
Xia et al estimating that 3 minutes of delay for one passenger costs 2.5 euros (Xia et al, 2013). 
Delays and an unreliable train service can affect both the economic viability of the service and 
the productivity of those passengers using the service, which has a knock-on effect to the wider 
economy. The Department for Transport estimates in their Transport analysis guidance (TAG) 
Databook that the perceived cost per hour of railway travel is £32.71 in 2023 prices, allowing 
for the inference that the cost of train delays for a passenger in the UK is £32.71 per hour 
(Department for Transport, 2023).  

My research question examines how different weather conditions impact the performance of 
train operators in the UK. This study assesses the impact certain weather conditions have on 
the amount of delay minutes and number of cancelled trains attributed to train operators each 
month, aiming to inform where funding should be spent and which weather types to prioritise 
mitigating against. This analysis will be useful to identify the weather conditions that will have 
the most impact, to inform where risk mitigation efforts should be prioritised, in an industry 
where limited funding is available (Brazil et al, 2017). I will use the software Stata to perform 
regression analysis to calculate the marginal impact of different types of weather, as informed 
by previous literature.  
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This study focusses on train operators who run services in England, Wales and Scotland. Train 
operators tend to run in specific geographical areas, so they will be subject to different weather 
conditions. For example, operators who run in Scotland and the North of England will be 
subject to colder weather conditions than those who run in the South of England. I will compare 
how different weather conditions which are experienced in different areas of Great Britain 
affect the performance of train operators. This study provides novel evidence on the 
relationship between performance and weather since it uses an annual time frame which has 
not been covered in other studies. The study also uses panel data on a wide area of track 
whereas other studies focus on one smaller section of railway. To my knowledge, a study like 
this has not been done for England, Scotland and Wales.  

 

2. Literature review  

A number of studies directly explore the effect of weather on train operator performance. These 
studies have provided useful insight into which weather variables I should be focussing on. 
However, the studies that do explore this topic use either a small section of railway or data 
from only one year. My literature review is split into two parts: variable selection and data 
analysis approaches. I have used the studies which are most similar to my dissertation topic to 
inform the selection of the weather variables used. I have then explored wider approaches to 
modelling panel data to understand how best to model the data I am using in my dissertation.  

2.1 Variable selection  

The impact of weather on train operator performance has been examined directly in a number 
of studies, using a range of approaches to model performance. Some studies have used 
measures of punctuality, defined as trains which have delay under three (Xia et al, 2013) or 
four (Zakeri and Olsson, 2018) minutes and the number of cancelled trains (Xia et al, 2013). 
Other studies compared published train schedules with actual train times (Brazil et al, 2017 and 
Nagy and Csiszar, 2015). These measures all focus on the percentage of trains which are on 
time whereas I have chosen to explore the amount of delay minutes recorded by each train 
operator and the number of trains each operator has cancelled each month. I have chosen this 
due to data availability based on what is reported by the Office of Rail and Road and available 
in the public domain.  

Several weather variables have been shown to be significant when it comes to their effect on 
train performance. A study by Xia et al, based on data in the Netherlands, found that snow, 
extreme within day temperature variation, high temperatures, rain, and wind all affect 
punctuality and the number of cancelled trains (Xia et al, 2013). This study also includes 
monthly dummy variables to include the effect of autumn and the increased number of leaves 
on the track in those months. Brazil et al found that rain and the month of November 
(representing the impact of leaves on the track) were significant factors affecting railway 
punctuality, using data from Dublin (2017). This study also stated that their analysis was 
limited by not controlling for passenger numbers (Brazil et al, 2017). A study on the Nordland 
line in Norway, concluded that snow depth had the main effect on punctuality of trains (Zakeri 
and Olsson, 2018). Nagy and Csiszar’s (2015) study in Hungary found that extreme cold, snow 
and extremely hot and dry weather conditions caused trains to be delayed. Chen and Wang 
(2019) show that heavy rain, thunderstorms and snow cause disruptions to high-speed rail.  

The inclusion of weather variables has varied between studies, particularly for temperature. 
The studies above have used different approached to including temperature in their analysis 
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and have found varying results on which temperatures are significant in causing delay. The 
table below summarises how different studies have defined hot and cold weather.  

Table 1: Temperatures which have been shown to be significant in causing delay  

Authors Temperature at which delay is caused 
Hot weather Cold Weather 

Xia et al, 2013 Above 23°C Below -3°C 
Brazil et al, 2017 Above 27°C Below 2°C 
Nagy and Csiszar, 2015 Above 30°C Below 3°C 
Mesbah, Lin & Currie, 2015 Uses how far from mean weather data is, mean weather is 

defined as 15°C  
 

I will be testing the effect of temperature, wind, rain, snow and dummy variables for autumnal 
months in my analysis. I will explore the different approaches to including temperature and to 
assess which is most appropriate for my dataset, since temperatures in Great Britain are less 
extreme than in many of the areas that have been studied.  

2.2 Approaches to modelling  

Most studies which look at the impact of weather on railway performance use linear regression 
models in their analysis. Xia et al uses a time series dataset of daily observations, over an eight-
year period and analyses the data using a standard linear regression model (Xia et al, 2013). 
Brazil et al uses simple multilinear regression models to analyse a panel dataset of daily 
observations from 2013. They used Akaike’s Information Criterion (AIC) to decide which 
variables in include in the regressions and reports the ANOVA values associated with each 
model (Brazil et al, 2017). Zakeri and Olsson also use linear regression analysis to analyse 
passenger trains from 2007 to 2016. To avoid multicollinearity, they have only included 
variables with a correlation coefficient below 0.8 and a Variance Inflation Factor (VIF) that is 
below 5 (Zakeri and Olsson, 2018). Guo, Wilson and Rahbee estimate 12 Ordinary Least 
Squares (OLS) models which differ in specifications to assess how weather affects both rail 
and bus usage in Chicago (2007). They decided to use OLS as it is a simple model which they 
could apply to different scenarios.  

The previously mentioned studies use data analysis methods which are mostly suitable for 
timeseries or cross-sectional data. The modelling techniques are therefore not helpful for 
analysing the dataset I am using, since I will be using a panel dataset, with observations for 21 
train operators over nine years. Analysis of this type of data comes with a different set of 
potential issues and the relationship observed is likely not to be explained sufficiently by using 
linear regression analysis. Pooled OLS models can be used to model panel data, but other 
modelling techniques can model panel data more accurately since pooled OLS would not model 
train operators as different entities and instead would combine all the datapoints together. I 
have therefore explored other approaches to analysing panel datasets.  

Panel data is commonly analysed using fixed or random effects models. Both fixed and random 
effects account for unobserved differences between the entities being sampled but by using 
different approaches (Bartels, 2009). Cheng and Zhao (2020) have used a random effects 
model, after the Hausman test indicated it was preferred over random effects to model poverty 
rates in different regions in China. While this study is not related to transport, the dataset used 
is of a comparable structure to my analysis. I will use the Hausman test to assess whether fixed 
or random effects are most appropriate for my dataset. 
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3. Methodology  

The hypothesis I will be testing is that months in which there are increased instances of 
inclement weather will have higher numbers of delay minutes and cancelled trains. I will be 
using historic monthly data from April 2011 to March 2020 to test how weather has impacted 
delay minutes recorded by train operators and from April 2014 to March 2020 to test the impact 
on the number of trains cancelled.  

3.1 Data  

The data sample consists of performance information for 21 passenger train operating 
companies for each four-week rail period. To measure train operator performance, I have used 
two metrics which are reported by the Office of Rail and Road (ORR). ORR are the economic 
and safety regulator for the railways. ORR is also the primary producer of Official Statistics 
for rail. The majority of the statistics they publish are designated as National Statistics by the 
Office for Statistics Regulation (OSR) (Office of Rail and Road, no date). The ORR data portal 
is a way of accessing and downloading rail statistics which is accessible in the public domain. 
I have used two variables from the passenger rail performance section of the data portal for my 
analysis: total delay minutes1 and the number of cancelled trains2. For delay minutes, this 
sample is over nine years, from April 2011 to March 2020. This is a panel dataset consisting 
of 2,457 observations. I have excluded the period after March 2020 due to Covid-19 since, due 
to a reduced number of services, train operator performance was not representative. For the 
number of cancelled trains, I have used a shorter timeframe due to data availability, with six 
years from April 2014 to March 2020. This panel dataset provides 1,638 observations.  

While other studies have used punctuality (percentage of trains which are on time) as a measure 
of delay (Xia et al, 2013 and Zakeri and Olsson, 2018), I have chosen to look at trains which 
were not on time as they provided the greatest number of observations and allow me to capture 
the effect of weather on both late trains and trains which are cancelled. The delay minutes 
dataset is disaggregated into causes and one cause recorded is ‘severe weather, autumn and 
structures’ (Office of Rail and Road, no date). Data attributed to severe weather only accounts 
for 7% of total delay minutes recorded by operators so I have chosen to look at all delay minutes 
to capture all weather effects, even those which may not have been categorised as due to 
weather at the time. This was also done by Xia et al (2013), with the rationale that delay cannot 
be attributed to weather with certainty. I have used weather data recorded by the Met Office 
(no date), which is accessed through their website under UK and regional series as part of their 
climate research. I have also used data from The Department for Business, Energy and 
Industrial Strategy (BEIS), which is accessed through the GOV.UK website (GOV.UK, 2023) 
and data recorded in the CEDA Archive (2022). These are all reliable sources of data, with the 
CEDA archive reporting data collected by the MET Office and BEIS reporting aggregates of 
data also collected by the MET office. The weather variables I will be testing are outlined in 
the table below.  

  

 
1 Table 3184 
2 Table 3124 
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Table 2: Description of weather variables and their sources  

Weather variable 
examined 

Description Variable 
type 

Source 

Maximum Temperature 
(°C) 

Average daily maximum 
temperature over a given month. 

Continuous  MET 
office  

Minimum Temperature 
(°C) 

Average daily minimum 
temperature over a given month. 

Continuous MET 
office 

Mean Temperature (°C)  Average of daily mean 
temperature over a given month. 

Continuous MET 
office 

Rainfall  Total precipitation in a month, 
measured in mm.  

Continuous MET 
office 

Rain days  Number of days in a month 
where rainfall was greater than 
1mm.  

Continuous MET 
office 

Days of snow lying Number of days in a month 
where greater than 50% of the 
ground was covered by snow. 

Continuous CEDA 
Archive 

Average windspeed Average windspeed in a given 
month, measured in knots, over 
the whole of the UK.   

Continuous BEIS 

 

To control for differences between train operators3 I have included proxies for passenger 
demand as recommended by Brazil et al (2017) in the form passenger kilometres4 and number 
of passenger journeys5. The rationale is that trains which travel either further or more 
frequently, with a greater number of passengers are likely to have higher levels of delay in 
general. Train operators which travel further distances will have a greater number of delay 
minutes attributed to them. Operators which carry more passengers, are likely to have more 
delay minutes, as there is more opportunity for delay to be caused by passengers boarding the 
train. I have also controlled for complexity of the routes travelled by different train operators 
by using the number of stations6 the operator manages as an approximation for the number of 
stations they stop at. Stopping at more stations, means more opportunity for there to be delay. 
These variables were all obtained from ORR’s data portal. These variables are reported 
annually for each operator.  

 

3.2 Data mapping  

Data is available for 23 train operators from the ORR’s data portal. I have excluded two of 
these operators as they did not have the full set of observations which means I would have an 
unbalanced panel dataset if I included them, which adds additional complexity when 
modelling. ORR reports railway performance data in 13 four-week rail periods. The railway 
period dates are reported on the ORR data portal7. I have used these 13 rail periods and matched 

 
3 It would be preferable to control for differences in track condition on different parts of the railway 
infrastructure, however the data was not available publicly at a suitable level of granularity for this analysis. 
4 Available from the ORR data portal under Passenger rail usage, table 1233. 
5 Available from the ORR data portal under Passenger rail usage, table 1223. 
6 Available from the ORR data portal under TOC key statistics, table 2243. 
7 Available from the ORR data portal under Railway period dates (CP1 to CP6). 
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the most relevant weather conditions to each period based on which month makes up the 
majority of the rail period. The data is mapped according to the table below.  

Table 3: Rail periods and their corresponding month  

Rail Period Month  
Period 1 April 
Period 2 May 
Period 3 June 
Period 4 July 
Period 5 August 
Period 6 September 
Period 7 September 
Period 8 October 
Period 9 November 
Period 10 December 
Period 11 January 
Period 12 February 
Period 13 March 

 

The MET office reports data split into eight districts, which cover different parts of the UK8. 
For the data I obtained directly from the MET office, I have mapped the routes each train 
operator takes to an area of the UK and then used the weather reported for that area.  

BEIS reports average windspeed for the whole of the UK for each month, I have therefore 
mapped each month of this data onto each train operator. Since the dataset reports average 
windspeed and the UK is not usually subject to extreme wind speed in the way other countries 
are, it is a reasonable assumption to use this data for all train operators. This still captures the 
monthly variation of wind in each month, allowing the change to be captured in the analysis 
but the impact of different wind speeds on different operators is not included, lowering the data 
quality in this area.  

The CEDA archive reports monthly data in 16 regions, capturing the whole of the UK. I have 
mapped the regions I assigned to each train operator for the MET office data to the relevant 
region from the CEDA data. This has involved aggregating some of the CEDA data so that the 
regions are comparable. The ORR data on passenger km, passenger journeys and managed 
stations is reported annually and quarterly. I have used the annual data and averaged it to four-
week periodic numbers for passenger journeys and passenger km. This assumption loses the 
exact journeys completed each month for train operators and loses the influx in demand 
possibly seen around Christmas time for example, which means the impact of higher demand 
on delay will not be completely captured by the analysis. For the number of managed stations, 
I have reported the yearly amount for each railway period, capturing any annal changes in the 
number of stations. The descriptive statistics for each variable included in my analysis are 
shown in the table below.  

  

 
8 A map showing these districts is available on the Met Office website under UK climate districts map. 
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Table 4: Descriptive statistics  

Variable  Max Min Mean St.dev 
Total delay minutes 359,467 935 50872 48501 
Number of trains cancelled 11,392 0 694.44 1,045.90 
Max Temperature 26.10 4.20 14.20 4.98 
Min Temperature 14.00 -3.20 6.23 3.83 
Mean Temperature 19.90 1.30 10.30 4.35 
Rainfall  334.70 2.50 79.84 43.87 
Rain Days 28.10 0.60 11.69 4.62 
Windspeed  14.05 5.48 8.68 1.60 
Snow 12.17 0.00 0.63 1.51 
Passenger journeys 26.84 0.05 5.94 6.15 
Passenger km  0.72 0.01 0.23 0.18 
Managed stations 478 0 119 126 

 

3.3 Temperature variables  

As reported in the literature review, the approach to temperature in analysis varies from study 
to study. I explored how different approaches affected my results and which gave the most 
significant and intuitive outputs. The raw data I collected on temperature was mean, minimum, 
and maximum temperature for each month. Maximum, minimum, and mean temperature is 
highly correlated, as shown in Table 5 below, so all three variables cannot be included in the 
analysis as there will be issues with multicollinearity.  

The data recorded is the maximum and minimum average temperature so does not capture what 
the actual hottest temperature or coldest temperature was in each month, hence why my dataset 
does not show temperatures above 26°C or below - 3°C despite these temperatures being 
reached in the UK in this period. The MET Office reports that temperatures reached 38.7°C in 
2019 (Met Office, 2022) but this is not reflected in the data. Therefore, the benefit of including 
the maximum and minimum temperature variables on their own is limited as any extreme 
temperatures on a given day are missed.  

As informed by the study by Xia et al (2013), I tested two additional temperature variables. 
Xia et al found that extreme within day variations were significant so I created a variable which 
captures the variation between maximum and minimum temperature for each month to assess 
if these differences affected delay. Xia et al also included a ‘relevant temperature’ for which if 
the average temperature was below 12°C, the minimum temperature on that day was used and 
if the average temperature was above 14°C, the maximum temperature was used. I created a 
variable using this method to test in my analysis.  

I also tested the inclusion of dummy variables for temperature above 23°C and below 2°C, as 
informed by Table 1 in my literature review. I explored a dummy variable which capture the 
5th percentile of cold weather and the 95th percentile of hot weather to assess how extreme 
temperatures for my dataset affected performance. This is informed by the maximum and 
minimum values included in my dataset and the way in which this data was distributed. These 
values were above 21°C and below 0°C.  
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Table 5: Correlation coefficients for temperature  
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Max Temp 1 
        

Min Temp 0.9442 1 
       

Mean Temp   0.9937 0.9652 1 
      

Temp 
difference 

0.7331 0.468 0.6728 1 
     

Temp <2°C -0.57 -0.6061 -0.5768 -0.2778 1 
    

Temp <0°C -0.2639 -0.3272 -0.269 -0.0324 0.4165 1 
   

Temp > 23°C 0.2696 0.2122 0.2518 0.285 -0.0565 -0.0235 1 
  

Temp > 21°C 0.453 0.4076 0.4422 0.3737 -0.1142 -0.0476 0.4942 1 
 

Relevant 
temperature 

0.9027 0.9202 0.918 0.5216 -0.4533 -0.2274 0.2799 0.1398 1 

 

3.4 The impact on delay minutes and cancelled trains  

3.4.1 Variable selection  

I found that using the mean temperature, difference between maximum and minimum 
temperature and dummies for temperature below 0°C and dummy for temperature above 21°C 
was best for modelling the relationship between temperature and performance as they produced 
the most significant results in my preliminary modelling. I chose to include windspeed and 
rainfall variables without manipulation of the data to capture how a unit change in these 
variables would impact performance. I also chose to assess what the impact of extremes of 
these types of weather would be on performance and so created dummy variables for the top 
95% percentile and bottom 5% percentile. For windspeed this was above 12 knots and below 
6 knots in a month. For rainfall this was above 160mm and below 23mm of rain in a month. It 
did not seem appropriate to model these extremes for snow as the variable used for snow 
measures the number of days where at least 50% of the ground is covered in snow and does 
not differentiate between different volumes of snow in these periods. I included the control 
variables I had identified in each model, which was passenger km, passenger journeys and 
number of managed stations. I also included periodic dummies to capture the effect of autumn 
and the 21 increased number of leaves on the track (Xia et al, 2013). I explored whether it was 
more appropriate to include a time trend or yearly dummies in my analysis.  

 

3.4.2 Model specification  

I tested the correlation coefficients of all the variables I was intending to include in my analysis, 
with a view to removing any variables where the correlation coefficient was above 0.8 to avoid 
the presence of multicollinearity in the regression as independent variables need to be 
independent of each or this can cause issues with the results. As shown by Table 9 and 10 in 
Annex 1, the correlation coefficients for all variables and their relationships with both delay 
minutes and cancelled trains were all below the cut-off point, so no variables needed to be 
removed.  
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To assess what the most appropriate modelling technique would be, I tried modelling my 
dataset using pooled ordinary least squares (OLS) and fixed and random effects generalised 
least squares models. The pooled OLS model provided results for some variables which were 
not representative of what would happen in real life, for example the model showed rainfall as 
a factor in reducing delay, which is contradicted by all the relevant literature. I then used the 
Hausman test to assess whether fixed or random effects would be most appropriate. The Stata 
Hausman tests to see if there is a systematic difference between the two models, if the null 
hypothesis is rejected this suggests the fixed effects model should be used.  

 

4. Results  

4.1 The impact of weather on total delay minutes  

Firstly, I chose to model the effect different weather variables had on delay, without dummies 
for weather extremes. The Hausman test for this model gave a test statistic of 0.3442, which 
meant I could not reject the null hypothesis meaning a random effects model should be used.  

Equation 1 shows the equation used to model the relationship  

�� = ���� + ���� + ��� + ��� + ��� + ����1 + ����2 + �����3 + �����4
+ �����5 + �����6 + �����7 + �����8 + �����9 + �����10
+ �����11 + �����12 + ���� + ����� + ����� + ����� + � + (� + �) 

Where DM is total delay minutes, MT is mean temperature, TD is temperature difference, R is 
rainfall, S is snow, W is windspeed, PD1 to PD12 refer to period dummies for periods 1 to 12, 
T is the time trend, PK is passenger km, PJ is passenger journeys, MS is managed stations, � 
is the unit specific effects and (� + �) is a composite error term.  

It is important to test for econometric issues which may affect the validity and interpretation of 
my results. One issue that can arise with panel data is heteroskedasticity, which means that 
there is not constant variance of residuals, which can lead to issues with the results output by 
the regression and makes the model likely to misreport the significance of variables. I used the 
Breusch-Pagan Lagrangian multiplier test to test for heteroskedasticity in the random effects 
model. The test statistic was 0, which means the null hypothesis of homoskedasticity is rejected 
and there is strong evidence of heteroskedasticity in my model.  

Another issue that can affect panel data models is autocorrelation. If autocorrelation is present, 
this means that the delay seen by a train operator in one period has an effect on the delay seen 
in the period after it. This can lead to relationships being incorrectly represented in the 
regression analysis. To test for autocorrelation, I used the Wooldridge test for autocorrelation 
in which the null hypothesis is that there is no first-order autocorrelation. The test statistic 
reported was 0.0004 which means I can reject the null hypothesis, so autocorrelation is present 
in my model. The robust standard errors option in Stata can be used to produce consistent 
estimations when heteroskedasticity and autocorrelation are present. I decided to use robust 
standard errors in my model to adjust the standard errors for the impact of autocorrelation and 
heteroscedasticity so I could make accurate inferences from my regression output.  

The results from the most relevant variables in this regression are outlined below in Table 1, 
using a random effect generalised least squares model, with robust standard errors for Models 
1 and 2.  
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Table 6: Regression results for Model 1 and 2  

Dependent Variable  Model 1 - Total delay 
minutes 

Model 2 - Delay 
attributed to weather  

Explanatory variable Coefficient  Coefficient  
Mean temperature -80.7106 -179.572* 
Temperature difference 997.0682* 414.5008** 
Rainfall 29.46919*** 32.28229*** 
Snow 970.3738*** 116.3636 
Windspeed 759.6765*** 548.4503*** 
Period dummy 7 5939.345* 1762.618** 
Period dummy 8 20226.1*** 4384.456*** 
Period dummy 9 27481.24*** 5709.893*** 
Period dummy 10 6644.655*** 625.8859** 
Period dummy 11 6967.211*** 103.3842 
Period dummy 12 7451.556*** 3166.713*** 
Time 157.1587*** 3.418186 
Constant -25962.98* -10382.6*** 
   
Observations 2,457 2,457 
Within R squared 0.2646 0.2260 
Between R squared 0.8742 0.8277 
Overall R squared 0.7598 0.3476 

*** Indicates significance at the 1% level, ** indicates significance at the 5% level and * 
indicates significance at the 10% level.  

Model 1 has an overall r-squared of 0.7598 which means that my model explains 75.98% of 
the overall variation in delay minutes. This model has a between r-squared value of 0.8742, 
meaning 87.42% of the variation between train operators is accounted for and a within r-
squared of 0.2646, which means only 26.46% of the variation in delay minutes within each 
train operator is explained.  

For a weather condition to be shown to have a real-life effect on delay minutes, the result needs 
to be statistically significant. When a result is significant at the 5% level, this means the there 
is only a 5% chance the relationship is due to chance. Model 1 results show that all the variables 
of interest in my literature review are significant in 25 causing delay. Temperature difference 
is significant at the 10% level, meaning higher variation in temperature in a month leads to 
more delays. A 1 degree increase in the difference between the hottest and coldest average 
temperature will increase delay by 977 minutes. Rainfall, snow and windspeed are all 
significant at the 1% level. A 1mm increase in rainfall will increase delay by 29 minutes. An 
additional day in which 50% of the ground is covered with snow will increase delay by 970 
minutes. An additional knot of windspeed, will lead to an additional delay of 760 minutes. 
Model 1 also shows that periodic dummies, and the month they are associated with, have an 
effect on delay. I have only reported the results for dummies 7 to 12, which represent weather 
for the months of September to February to show the effect of autumn and cold weather months 
on delay. Period 8 (October) and Period 9 (November) are significant at the 1% level, showing 
that the presence of leaves on the track cause delay.  

To assess the validity of Model 1, I ran the same model specification with a dependent variable 
of delay minutes which had been directly recorded as due to weather events, the results are 
reported for Model 2 in the table above. The Hausman test again indicated that a random effects 
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model could be used. This model had evidence of heteroskedasticity, but first-order 
autocorrelation was not present. I used robust standard errors to adjust the standard errors for 
heteroskedasticity to allow inferences to be made from the results. Model 2 has a lower overall 
r-squared meaning these variables explain less of the variation in delay attributed to weather 
than they do for total delay minutes. In Model 2, average temperature is significant at the 10% 
level. A warmer mean temperature reduces delay minutes. Snow is no longer significant in 
causing delay, but this could be explained by the likelihood that trains would have been 
cancelled if there were large amounts of snowfall, meaning delay minutes would not be 
recorded for this under the extreme weather category.  

 

4.2 The impact of extreme weather on delay attributed to weather  

I then assessed the impact extreme weather conditions had on delay. I included high and low 
temperature, rain and wind as defined in the methodology section of this paper. The Hausman 
test indicated that a random effects model should be used and due to the presence of 
autocorrelation and heteroskedasticity, I used robust standard errors in this model.  

Equation 2 shows the equation used to model the relationship  

�� = ���� + ���� + ���� + ���� + ��� + ���� + �� �� + ��� + ��� + �����
+ ����� + �����1 + �����2 + �����3 + �����4 + �����5 + �����6
+ �����7 + �����8 + �����9 + �����10 + �����11 + �����12 + ����
+ ����� + ����� + ����� + � + (� + �) 

Where HT is high temperature, LT is low temperature, HR is high rain, LR is low rain, HW is 
high wind and LW is low wind.  

The results from the most relevant variables in this regression are outlined in Table 7 using a 
random effect generalised least squares model, with robust standard errors.  

Model 3 has similar r-squared values to model 1. This means the results explain the same 
amount of variation within and between train operators as model 1.  

Under this model, temperature difference is no longer statistically significant, meaning it 
cannot be concluded that it affects delay minutes. When the temperature is above 21 degrees, 
delay is increased by 4,694 minutes. This result is significant at the 1% level. Temperature 
below 0 is significant at the 5% level and causes delay increase by to be 3,666 minutes. Rainfall 
in this model is still significant but at the 10% level and has a similar causal relationship to 
delay as in model 1. Low rainfall is significant at the 1% level, meaning when rainfall in a 
month rainfall is below 23mm, delay minutes increase by 4,810 minutes. Snow remains 
significant at the 1% level but increases delay by a smaller amount than in model 1. Windspeed 
itself is no longer significant but high and low windspeed is significant at the 1% and 5% 
respectively. Windspeed above 12 knots lead to longer delays and windspeed below 6 knots 
reduces delay time. Periods 7 and 8 remain significant in causing delay by a similar amount as 
the results in model 1.  
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Table 7: Regression results for model 3 and 4  

Dependent variable Model 3 - Total delay 
minutes 

Model 4 - Delay 
attributed to weather 

Explanatory variable Coefficient  Coefficient  
Mean temperature -329.629 -323.3073*** 
Temperature difference 479.4391 153.3196 
High temperature 4694.087*** 1229.163*** 
Low temperature 3665.954** 1209.974 
Rainfall 27.26253* 25.23796*** 
High rainfall 967.4066 2023.915** 
Low rainfall 4810.396*** 1686.574*** 
Snow 685.8273*** 14.4028 
Windspeed 212.1029 262.507*** 
High wind 7262.36*** 4709.92*** 
Low wind -5728.98** 389.9061 
Period dummy 7 7632.492** 2461.98*** 
Period dummy 8 20553.19*** 4719.394*** 
Period dummy 9 26499.77*** 5318.24*** 
Period dummy 10 3820.755* -1074.395*** 
Period dummy 11 5536.238*** -739.8768** 
Period dummy 12 5029.695*** 1791.427*** 
Time 158.5649*** 5.956646* 
Constant -14403.4 -4410.771*** 
   
Observations 2,457 2,457 
Within R squared 0.2721 0.2595 
Between R squared 0.8735 0.8099 
Overall R squared 0.7600 0.3707 

*** Indicates significance at the 1% level, ** indicates significance at the 5% level and * 
indicates significance at the 10% level.  

 

Model 4 results report the effect of extreme weather on delay minutes which are directly 
attributed to weather. Again, this is a random effects model with robust standard errors. In this 
model, mean temperature is now significant at the 1% level in causing delay and snow is no 
longer significant. Low windspeed is shown to increase delay however this result is not 
statistically significant so it cannot be concluded that this result is not due to chance. This 
model has lower r-squared values but supports the results in Model 1, as the same kind of 
relationship is shown between most variables of interest and delay minutes.  

 

4.3 The impact of weather on cancelled trains  

I also explored how the variables used to model delay minutes impacted the number of trains 
cancelled. The Hausman test gave a test statistic of 1, meaning the appropriate model to use is 
random effects. I also tested for heteroskedasticity and autocorrelation. There was evidence of 
heteroskedasticity and autocorrelation at the 1% level, so I used robust standard errors to give 
consistent estimations.  
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Table 8: Regression results for Model 5  

Number of trains cancelled 
 

Explanatory variable Coefficient  
Average temperature 0.255219 
Temperature difference -4.16233 
Low temperature 269.0923*** 
High temperature 203.0811* 
Rainfall 0.272853 
High rain 16.09288 
Low rain -31.4661 
Snow 9.007957 
Windspeed -8.72195 
High wind 209.6844* 
Low wind 70.725 
Period_dummy7 -87.3727 
Period_dummy8 38.54047 
Period_dummy9 92.16886*** 
Period_dummy10 37.59331 
Period_dummy11 -79.5644 
Period_dummy12 40.54165 
Time 6.835271 
Constant -306.937 
  
Observations 1,638 
Within R squared 0.1442 
Between R squared 0.8036 
Overall R squared 0.6410 

*** Indicates significance at the 1% level, ** indicates significance at the 5% level and * 
indicates significance at the 10% level.  

 

Model 5 has an overall r-squared value of 0.6410, meaning 64.1% of overall variation in delay 
minutes is explained by the model. This model shows a less significant relationship between 
the variables of interest and performance than Models 1 to 4. Most variables do not have a 
significant impact on the number of trains which are cancelled. This means that I can only 
conclude that there is a causal effect that is not due to chance for the following variables. Low 
temperature is significant at the 1% level and increases the number of trains cancelled by 269 
trains. High temperature is significant at the 10% level and increases the number of cancelled 
trains by 203 trains. High windspeed is also significant at the 10% level. This increases the 
number of cancelled trains by 209. Period 9, which represents November, is significant at the 
1% level, and therefore adds to the validity that Autumn months worsen performance.  

5. Discussion/Conclusion  

5.1. Summary of main results  

This study aimed to explore the impact weather has on train operator performance within the 
UK. Studies using data from England, Wales and Scotland have not yet been explored in this 
context. I aimed to assess how weather conditions, which have been shown to be relevant to 
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other countries, affect the train operators in England, Wales and Scotland. I assessed two key 
aspects of performance, assessing separately the effect of weather on delay minutes and number 
of trains cancelled. According to previous literature, delay is caused by snow, high rain and 
very dry weather, wind, cold temperatures and extremely hot temperatures. Seasonal effects 
have also been shown by the significant impact of the month of November on performance.  

I was able to show that key weather conditions discussed in my literature review affect delay 
minutes in the UK. I have shown that hot and dry weather conditions have the greatest effect 
on delay minutes. I have also shown that heavy rain, hot temperatures and high windspeed lead 
to increased delay. The evidence supports my hypothesis that inclement weather causes delay, 
and I have been able to conclude that an increase in certain weather conditions will increase 
delay minutes. The results I have obtained for total delay minutes do not provide any 
unexpected results. However, when I modelled just delay attributed to extreme weather, some 
results were less intuitive. For example, snow was not found to have a significant effect on 
delay minutes, however when looking at all delay minutes, snow is shown to increase delay 
and this result is statistically significant.  

Cancellations and weather show a less defined relationship and variables which I would expect 
to be significant in causing cancellations were not. Snow and rainfall had no significant effect 
on cancelled trains in my analysis. This is unexpected since intuition would suggest that snow 
and flooding due to high rainfall should have an impact in the number of trains cancelled. 
Model 5 does however use a smaller dataset than delay minutes and so this smaller sample may 
be yielding less robust results. This model does support the delay model in that extreme 
temperatures, high windspeed and the month of November have significant effects on delay.  

5.2. Policy implications  

Network Rail, who own the majority of the railway infrastructure in the UK, released their 
Third Adaptation report in December 2021, which outlines their plans for dealing with the 
impact of climate change (Network Rail, 2021). In this report Network Rail say then plan to 
adjust their approach to asset management so that infrastructure can cope with future weather 
conditions. Their effort seems to be focused on reducing the impact of flooding by increasing 
drainage, stabilising slope to reduce landslides and enhancing maintenance to withstand high 
temperatures (Network Rail, 2021).  

The key policy implications from my analysis are that the greatest effect on delay minutes 
come from high temperatures and low rain. The UK does not regularly experience high 
temperatures, but the impact of a warming climate makes this type of weather and the risk it 
poses likely to be more frequent. The largest impact on delay minutes, from my analysis, comes 
due to seasonal effects, especially for the month of November, therefore efforts should also be 
prioritised to protect against this.  

5.3 Recommendations for future research  

These models do not capture the relationship between performance and weather as accurately 
as data which is disaggregated daily would. Repeating this study with daily observations would 
be preferable and allow for the exact weather conditions and delay or cancellations caused to 
be examined. When working with periodic data, it is not possible to assess what the exact daily 
temperature or rainfall, for example, was and how this relates to train operator performance on 
that day. This however was not possible for my study as daily delay and cancellation data is 
not published.  
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It would be preferable to extend this research to include variables for track specific 
characteristics which are not captured currently in my dataset. Train operators run on different 
parts of the railway network. Different areas of track have a different mix of electrification, 
which would be more disrupted by heavy rain or snow due to issues with signals being 
interrupted or electrical wiring damaged by high wind, which in turn could worsen a train 
operator’s performance. Track is also more susceptible to flooding due to high rainfall in some 
areas, which again would lead to more delay and cancelled trains during a period of heavy rain. 
Controlling for specific track characteristics would improve the robustness of my analysis, 
since issues with railway track have a direct effect on whether train operators can run their 
services or not.  
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Annex 1: Correlation coefficients  

Table 9: Total delay minutes 
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Delay Mins 1 
               

Mean Temp -0.034 1 
              

Temp difference -0.130 0.673 1 
             

Low Temp -0.021 -0.27 -0.032 1 
            

High Temp 0.028 0.442 0.374 -0.048 1 
           

Rainfall 0.108 -0.202 -0.486 -0.007 -0.180 1 
          

High Rain 0.079 -0.128 -0.206 0.046 -0.062 0.606 1 
         

Low Rain -0.044 0.122 0.274 0.004 0.066 -0.339 -0.052 1 
        

Snow -0.008 -0.553 -0.420 0.293 -0.112 0.065 0.019 -0.061 1 
       

Windspeed  0.029 -0.489 -0.375 0.112 -0.243 0.325 0.214 -0.224 0.209 1 
      

High Wind 0.027 -0.220 -0.167 0.099 -0.063 0.262 0.166 -0.053 0.106 0.624 1 
     

Low Wind -0.023 0.133 0.106 -0.023 -0.036 -0.191 -0.030 0.553 -0.055 -0.264 -0.031 1 
    

Passenger km  0.665 0.030 -0.031 -0.055 0.035 -0.014 -0.005 -0.012 -0.021 -0.004 -0.005 0.000 1 
   

Passenger Journeys 0.690 0.059 0.110 -0.006 0.059 -0.067 -0.021 0.021 -0.078 -0.003 -0.002 0.002 0.653 1 
  

Managed Stations 0.679 -0.053 -0.134 -0.001 -0.041 0.209 0.189 -0.036 0.041 -0.001 0.000 0.001 0.267 0.494 1 
 

Time  0.140 0.087 0.075 -0.047 0.120 -0.009 -0.029 -0.057 -0.148 -0.092 -0.103 -0.037 0.063 0.043 -0.002 1 
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Table 10: Number of trains cancelled  
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Trains cancelled 1 
               

Mean Temp 0.003 1 
              

Temp difference -0.016 0.680 1 
             

Low Temp 0.044 -0.254 -0.041 1 
            

High Temp 0.073 0.466 0.382 -0.047 1 
           

Rainfall 0.039 -0.196 -0.519 -0.050 -0.197 1 
          

High Rain 0.039 -0.099 -0.225 0.024 -0.062 0.595 1 
         

Low Rain -0.026 0.167 0.291 0.031 0.102 -0.363 -0.051 1 
        

Snow -0.020 -0.567 -0.413 0.242 -0.127 0.150 0.047 -0.101 1 
       

Windspeed  0.028 -0.527 -0.416 0.117 -0.234 0.349 0.208 -0.276 0.321 1 
      

High Wind 0.028 -0.178 -0.144 0.069 -0.058 0.226 0.160 -0.048 0.175 0.593 1 
     

Low Wind -0.041 0.159 0.124 -0.026 -0.047 -0.236 -0.035 0.642 -0.071 -0.322 -0.032 1 
    

Passenger km  0.535 0.028 -0.039 -0.039 0.034 -0.014 -0.009 -0.002 -0.015 0.001 -0.003 -0.007 1 
   

Passenger Journeys 0.771 0.059 0.114 0.019 0.056 -0.070 -0.035 0.029 -0.086 0.001 -0.001 -0.002 0.636 1 
  

Managed Stations 0.517 -0.054 -0.136 0.008 -0.046 0.215 0.195 -0.030 0.048 -0.001 0.000 0.001 0.254 0.488 1 
 

Time  0.153 0.084 0.053 -0.023 0.112 0.063 0.010 -0.138 -0.131 -0.032 -0.093 -0.209 0.022 0.006 -0.004 1 
  


