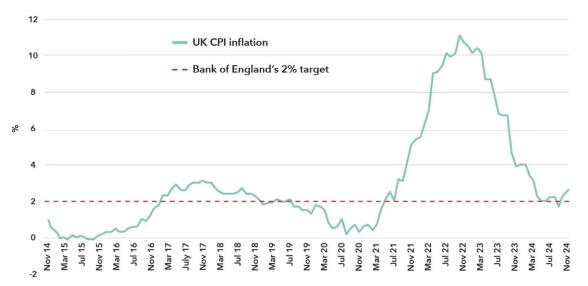
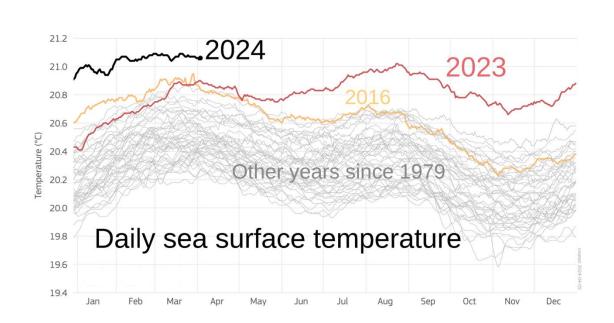


Workshop Agenda


- Welcome & Introductions
- Ice breaker: Sharing your own perspective
- Understanding Operational Resilience vs. Net-Zero Goals
- Activity: Resilience—Sustainability Matrix
- Supply Chain Shock Simulation
- Wrap-Up & Feedback


Why this Workshop Now

- Increasing climate volatility
- Pressures to decarbonise
- Operational fragility exposed by COVID-19, geopolitical tensions
- Need for integrated thinking

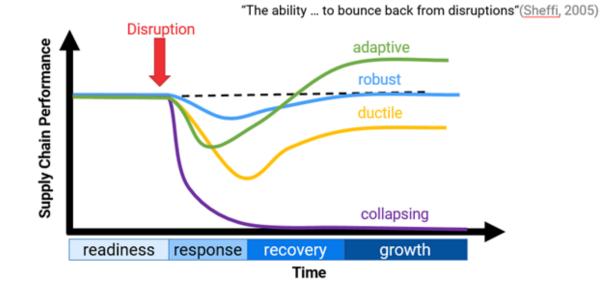
UK Consumer Price Index inflation

Icebreaker

 What Resilience and Sustainability (focus on Environmental) mean in your industry/organisation?

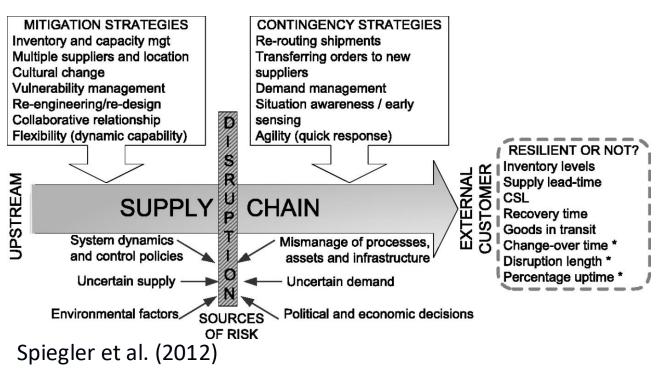
Operational Resilience

• In one or two words, what does operational resilience mean to you?


Flexibility	Robustness	Readiness
Responsiveness	Business Continuity	Redundancy
	Recovery	
Agility	Resisting Disruption	Buffering

Contingency Mitigation/Anticipation

Operational Resilience

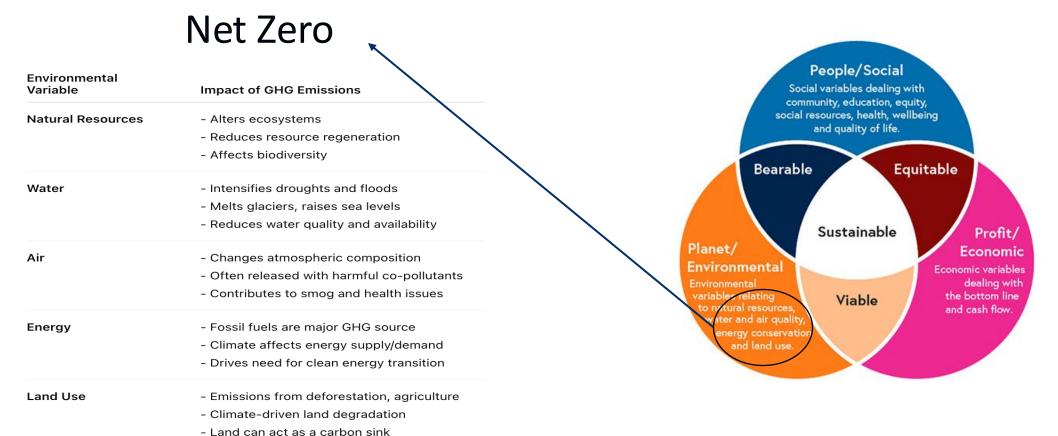


- The concept of resilience is widely explored across multiple disciplines, including
 - ecology
 - physics and engineering
 - psychology and
 - economics
- In organisations: ability to withstand turbulence, recover, or adapt to maintain operations and survive unexpected disruptions
- In SCs, resilience focuses on the ability of organisations within the SC network to coordinate and manage their partners ensuring continuity of and fulfilling customer demands during disruptions.

Industry practices for Operational Resilience

New SC practices

- Nearshoring, reshoring and local sourcing
- Real-time dashboards for SC visibility
- Al for anticipating disruptions and recommending adaptive decisions
- IoT for real time monitoring of assets and operations
- Blockchain for secure, transparent and traceability


Other organisational level practices

- Infrastructure & Systems resilience
 - Redundancy for energy, IT and communications
 - Backup power sources (generators, batteries...)
 - Cybersecurity and breach recovery plans
- Workforce resilience
 - Cross-training employees and flexible staffing models
 - Skills circulation and job sharing
 - Remote work capability

Net Zero and Sustainability

Net Zero: refers to reducing greenhouse gas emissions to as close to zero as possible, and balancing any
remaining emissions with removals (e.g. through carbon capture or reforestation).

Industry practices for Net Zero

Manufacturing & Industry

- Switching to renewable electricity (solar, wind, hydro)
- Electrification of heating processes (e.g. replacing gas furnaces with electric induction)
- Waste heat recovery systems
- Upgrading to energy-efficient motors and drives
- Carbon capture and storage (CCS) for high-emission processes (e.g. cement, steel)

Logistics & Transport

- Fleet electrification (EV trucks, vans, forklifts)
- Modal shift from road to rail or water transport
- Route optimisation and load consolidation
- Use of sustainable fuels (e.g. biofuels, green hydrogen)
- Idle-time reduction technologies for trucks and ports

Commercial Buildings

- Retrofitting with efficient HVAC and insulation
- LED lighting and smart building controls
- On-site renewable energy generation (e.g. rooftop solar)
- Green building certification (e.g. BREEAM, LEED)

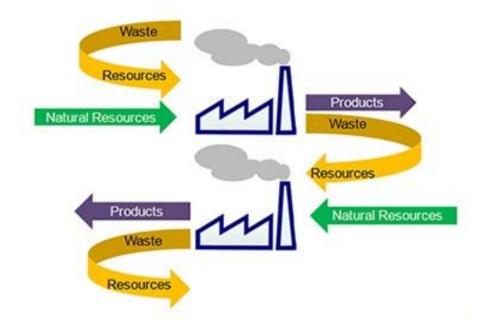
Retail & Consumer Goods

- Sustainable packaging (biodegradable, recyclable, lightweight)
- Localised sourcing to reduce transport emissions
- Product life extension through repair, reuse, remanufacturing

Agriculture & Food

- Precision farming (optimising fertiliser and water use)
- Methane capture from livestock and manure
- Regenerative agriculture helping capture and store carbon in soil
- Reducing food waste across the supply chain

Energy Sector

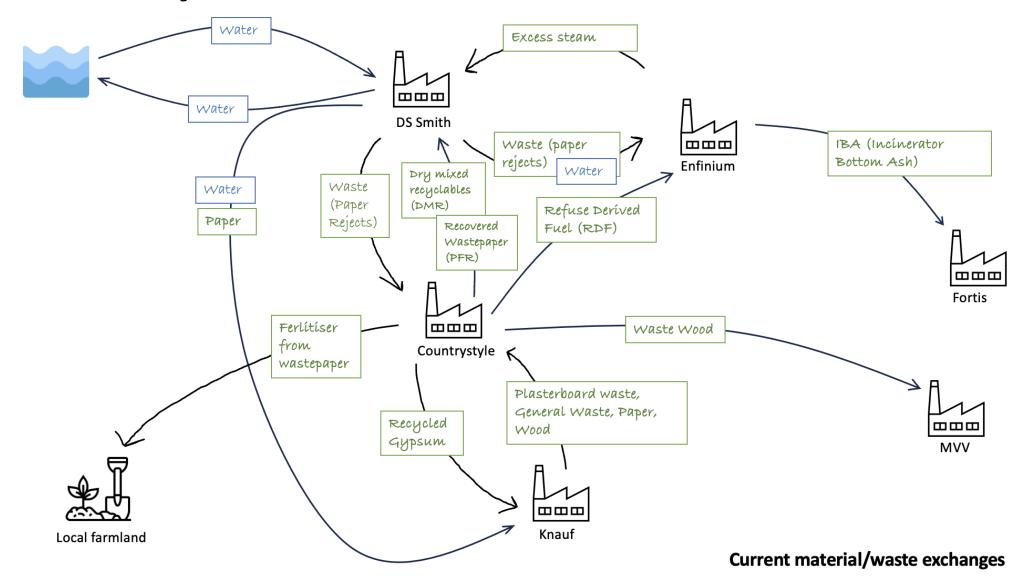

- Shutting down coal-fired power plants
- Investing in renewable energy infrastructure
- Grid modernisation and energy storage
- Demand-side management (e.g. pricing that encourages users to shift usage to off-peak)

Collaborative Practice for Net Zero: Industry Symbiosis

"Industrial Symbiosis is a collaborative approach where different businesses—often from diverse sectors—work together to optimise resource use by sharing materials, energy, water, or byproducts."

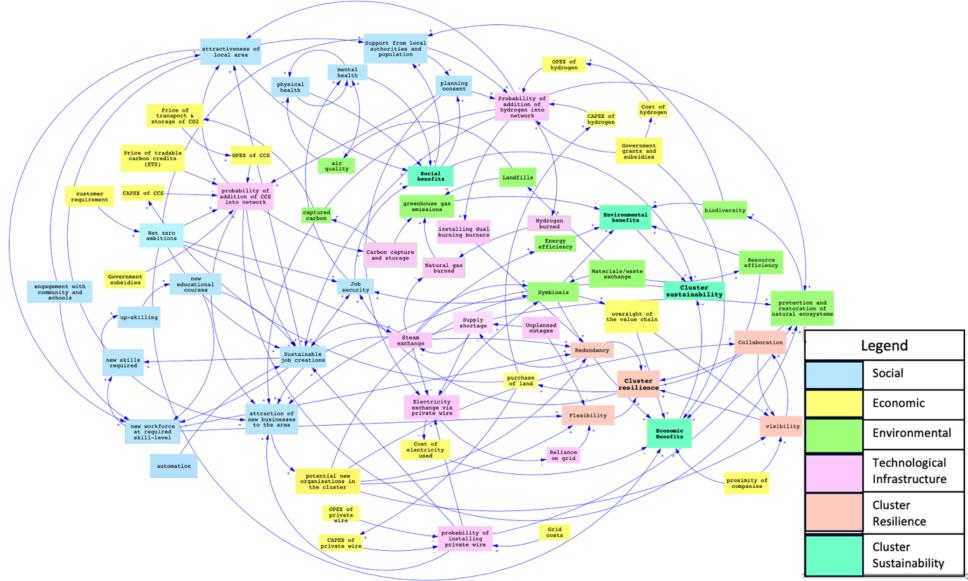
Turning one company's waste into another's raw material

How does this help resilience?

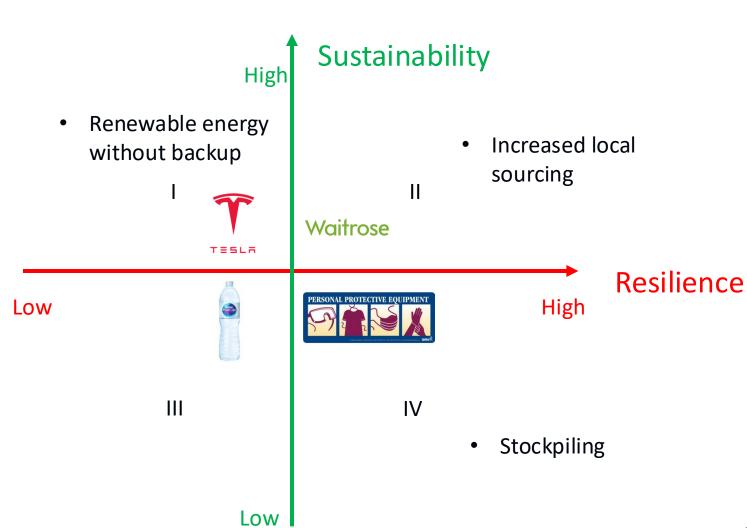

- By diversifying resource inputs, companies are less vulnerable to single-source disruptions.
- By sharing resources locally, they can bypass longer, riskier supply routes.

How does this help sustainability?

- Reduced raw material extraction and waste disposal lowers carbon footprints.
- Energy and water reuse reduce environmental impact.


Kemsley Industrial Cluster

Kemsley Industrial Cluster


Activity: Resilience—Sustainability Matrix

Discuss the tensions and synergies between resilience and sustainability in your industry/organisation

- Sinergy example: Shifting a greater proportion of sourcing locally reduces reliance on global supply chains and lowers transport emissions.
- Tension example: Stockpiling inventory, increases buffer during disruptions but leads to higher energy use and potential waste
- Tension example: Shifting to a single renewable energy system without back up (e.g. Tesla)

Find an example for each of the quadrants

Synergies between Resilience and

both risk and emissions

Net Zero

Synergy	Resilience Benefit	Sustainability Benefit
Local circular sourcing	Reduces reliance on global supply chains	Cuts emissions from transport and waste
Renewable-powered microgrids	Provides energy independence	Supports decarbonised energy systems
Digital twins and predictive analytics	Anticipates and mitigates disruptions	Optimises energy use and resource efficiency
Modular manufacturing systems	Enables fast reconfiguration and scaling	Reduces overproduction and energy waste
Shared logistics hubs with green fleets	Spreads risk across partners	Consolidates shipments, uses electric vehicles
Reverse logistics and repairability	Extends product lifecycles, buffers shortages	Supports circular economy principles
Supplier engagement on	Builds collaborative	Drives down emissions

response to shocks

collaboratively

QII

Tensions between Resilience and

perishables

Net Zero

Tension	Resilience Focus	Net-Zero Impact
Stockpiling inventory	Increases buffer during disruptions	Leads to higher energy use and potential waste
Redundant suppliers	Ensures backup sourcing	May include high-carbon suppliers or less efficient transport
Diesel backup generators	Provides power continuity	High emissions, counter to decarbonisation efforts
Expedited air freight	Maintains delivery timelines	Higher carbon footprint compared to sea or rail
Reshoring to secure supply	Shortens and simplifies supply chains	May increase emissions if domestic production is less green
Overengineering for robustness	Minimises risk of failure	Can be resource-intensive and carbon-heavy
Cold storage for	Protects products from	High energy use, especially if not

spoilage

powered by renewables

QIV

Tensions between Resilience and

without backup

Net Zero

Tension	Sustainability Benefit	Resilience Impact
Just-in-Time with green supplier	Minimises inventory wasteReduces emissions from storageand overproduction	Vulnerable to supplier or transport delaysNo buffer during disruptions
Electric-only delivery fleet with no diesel backup	Zero tailpipe emissionsSupports decarbonisation targets	Dependent on grid stability and charging infrastructureLimited fallback in outages
Organic farming with low-input systems	Reduces chemical useEnhances soil and ecosystemhealth	Lower yieldsHigh sensitivity to weather and pest shocks
Rainwater-only irrigation	- Saves freshwater resources - Low-energy input	Ineffective during droughtsNo alternative water source
Locally sourced, low-carbon materials with no backup suppliers	Cuts transport emissionsSupports local economy and footprint	- Lack of redundancy - Susceptible to regional disruptions
Recycled materials with limited availability	Reduces raw material extractionLowers embodied carbon	Risk of inconsistent supplyMay not meet volume or quality needs
Renewable energy systems	- Produces zero emissions	- Intermittent generation

- Reduces fossil , reliance

 No energy continuity during low supply periods (e.g. no sun, no wind)

QI

Supply Chain Shock Simulation

- Let's challenge your decision-making under pressure with a dynamic simulation called *Supply Chain Shock*
- This exercise is designed to reflect the kinds of real-world disruptions that supply chains — and broader operations — face regularly

In teams, you'll work through a series of disruption 'rounds,' each presenting a different scenario. For each one, you'll choose a response strategy from a set of options. Each decision will carry consequences across three areas:

Resilience – how well your business bounces back,

Sustainability – measured in terms of greenhouse gas emissions, and

Finance – the cost or savings associated with your decision.

Your goal is to find the best trade-offs – not just to survive the disruption, but to do so responsibly and strategically."

Round 1: Supplier Factory Fire

• Your key supplier's factory is shut down due to a fire.

- Switch to backup local supplier
- Import from overseas supplier
- Use existing inventory and delay production

Round 2: Geopolitical Trade Ban

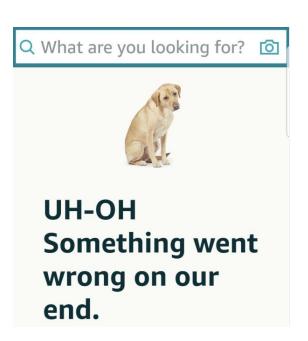
New trade restrictions block shipments from a major country.

- Source alternative materials locally
- Pay higher tariffs to keep using existing supplier
- Reduce production volume temporarily

Round 3: Labour Strike at Distribution Centre

• A strike halts operations at your main warehouse.

- Use third-party logistics provider
- Delay shipments to customers
- Use smaller regional warehouses



Round 4: Major Online Platform Outage

• Your main online sales platform crashes during peak shopping season.

- Redirect customers to physical stores
- Use third-party e-commerce platform
- Delay order processing until platform recovers

Round 5: Call Centre Staff Shortage

• High absenteeism at call centres due to flu outbreak

- Use AI chatbots to handle simple queries
- Outsource to overseas call centres
- Delay non-urgent customer requests

Your fraud detection software malfunctions

- Increase manual transaction reviews
- Temporarily reduce transaction limits
- Outsource fraud detection to a third party

Round 7: Cross-Border Carbon Tax Introduced

 A new carbon border adjustment mechanism increases the cost of importing from a highemission supplier

- Pass the cost increase to customers without changing supplier
- Negotiate carbon-offset deal with existing supplier
- Reengineer product to use less imported material

Key Takeaways

- Resilience and net-zero are not always aligned but can be with thoughtful design.
- **Tensions** exist (e.g. single green suppliers, no backups), but so do **synergies** (e.g. local renewables, shared logistics).
- The goal is not to eliminate all tensions but to manage **trade-offs** while maintaining long-term viability and responsibility.

"There is no perfect answer—only informed, balanced decisions."

 Balancing resilience and sustainability requires exploring a variety of practices and approaches.

Reflective Questions to Ask When Facing a Disruptive Event

- What are we trying to protect or preserve?
 - Core operations?
 - Brand reputation?
 - Environmental and/or financial commitments?
- Do we risk undermining long-term goals for short-term stability?
- Are we over-prioritising continuity at the cost of sustainability (or vice versa)?
 - Can we find a lower-impact option?
- What are the hidden vulnerabilities this disruption has exposed?
- Can this disruption be an opportunity to rebuild better?

"Building a future-ready organisation means preparing for uncertainty and meeting climate commitments. These goals don't always pull in the same direction, but with smart, adaptive design—they can reinforce each other."

Thank You.

Virginia L M Spiegler V.L.Spiegler@kent.ac.uk

A Sustainable Tomorrow Kent.ac.uk/Kent-business-school

